中国人在马来群岛各国的中国社区中突出特征。在这些国家,中国人经历了对当地语言和文化的调整过程,这导致每个国家发生中国变体。在本文中,我们对从五个马来群岛国家收集的中国新闻文本进行了定量分析看法。统计结果表明,这五个国家中使用的中国变体与现代中国大陆同行不同。同时,我们设法提取并分类了每个国家使用的几个中文单词。所有这些差异反映了中国人如何在海外发展,并证明了ROM当地社会和文化对中国发展的深远影响。
translated by 谷歌翻译
小型子图(Graphlets)是描述大型网络基本单元的重要特征。子图频率分布的计算在包括生物学和工程在内的多个领域中具有广泛的应用。不幸的是,由于该任务的固有复杂性,大多数现有方法在计算密集型且效率低下。在这项工作中,我们提出了GNNS,这是一个新颖的表示学习框架,该框架利用图神经网络有效地对子图进行了估算的频率分布。我们的框架包括一个推理模型和一个生成模型,该模型学习节点,子图和图形类型的层次结构嵌入。使用学习的模型和嵌入,以高度可扩展和并行的方式对子图进行采样,然后根据这些采样的子图执行频率分布估计。最终,与现有方法相比,我们的方法达到了可比的精度和显着的速度。
translated by 谷歌翻译
在发展强化学习(RL)培训系统方面取得了重大进展。过去的作品,例如Impala,Apex,Seed RL,样本工厂等,旨在改善系统的整体吞吐量。在本文中,我们试图解决RL训练系统中的常见瓶颈,即平行环境执行,这通常是整个系统中最慢的部分,但很少受到关注。通过针对RL环境的策划设计,我们改善了不同硬件设置的RL环境模拟速度,从笔记本电脑和适度的工作站到NVIDIA DGX-A100等高端机器。在高端机器上,Envpool在Atari环境上的环境执行每秒可实现100万帧,在Mujoco环境上每秒执行300万帧。在笔记本电脑上运行时,Envpool的速度是Python子过程的2.8倍。此外,在开源社区中已经证明了与现有RL培训库的极大兼容性,包括Cleanrl,RL_Games,DeepMind Acme等。最后,Envpool允许研究人员以更快的速度迭代他们的想法,并具有巨大的潜力,并具有巨大的潜力事实上的RL环境执行引擎。示例运行表明,在笔记本电脑上训练Atari Pong和Mujoco Ant只需5分钟即可。 Envpool已经在https://github.com/sail-sg/envpool上开源。
translated by 谷歌翻译
作为自然语言处理领域(NLP)领域的广泛研究,基于方面的情感分析(ABSA)是预测文本中相对于相应方面所表达的情感的任务。不幸的是,大多数语言缺乏足够的注释资源,因此越来越多的研究人员专注于跨语义方面的情感分析(XABSA)。但是,最近的研究仅集中于跨语性数据对准而不是模型对齐。为此,我们提出了一个新颖的框架CL-XABSA:基于跨语言的情感分析的对比度学习。基于对比度学习,我们在不同的语义空间中关闭具有相同标签的样品之间的距离,从而实现了不同语言的语义空间的收敛。具体而言,我们设计了两种对比策略,即代币嵌入(TL-CTE)和情感水平的对比度学习,对代币嵌入(SL-CTE)的对比度学习,以使源语言和目标语言的语义空间正规化,以使其更加统一。由于我们的框架可以在培训期间以多种语言接收数据集,因此我们的框架不仅可以适应XABSA任务,而且可以针对基于多语言的情感分析(MABSA)进行调整。为了进一步提高模型的性能,我们执行知识蒸馏技术利用未标记的目标语言的数据。在蒸馏XABSA任务中,我们进一步探讨了不同数据(源数据集,翻译数据集和代码切换数据集)的比较有效性。结果表明,所提出的方法在XABSA,蒸馏XABSA和MABSA的三个任务中具有一定的改进。为了获得可重复性,我们的本文代码可在https://github.com/gklmip/cl-xabsa上获得。
translated by 谷歌翻译
作为世界上第四大语言家庭,Dravidian语言已成为自然语言处理(NLP)的研究热点。虽然Dravidian语言包含大量语言,但有相对较少的公众可用资源。此外,文本分类任务是自然语言处理的基本任务,如何将其与Dravidian语言中的多种语言相结合,仍然是Dravidian自然语言处理的主要困难。因此,为了解决这些问题,我们为Dravidian语言提出了一个多语言文本分类框架。一方面,该框架使用Labse预先训练的模型作为基础模型。针对多任务学习中文本信息偏见的问题,我们建议使用MLM策略选择语言特定的单词,并使用对抗训练来扰乱它们。另一方面,鉴于模型无法识别和利用语言之间的相关性的问题,我们进一步提出了一种特定于语言的表示模块,以丰富模型的语义信息。实验结果表明,我们提出的框架在多语言文本分类任务中具有重要性能,每个策略实现某些改进。
translated by 谷歌翻译
神经机翻译模型假设可以通过自动关注网络从双语语料库中学到语法知识。但是,在弱监管中训练的注意网络实际上无法捕获句子的深层结构。当然,我们希望引入外部语法知识来指导注意力学习网络。因此,我们提出了一种新颖的,无参数依赖性缩放的自我关注网络,其将明确的句法依赖关系集成到注意网络中以驱逐注意力分布的分散。最后,提出了两种知识稀疏技术,以防止模型过度禁止嘈杂的句法依赖性。对IWSLT14德语和WMT16德语翻译任务的实验和广泛分析验证了我们方法的有效性。
translated by 谷歌翻译
在钢筋学习中,体验重播存储过去的样本以进一步重用。优先采样是一个有希望的技术,可以更好地利用这些样品。以前的优先级标准包括TD误差,近似和纠正反馈,主要是启发式设计。在这项工作中,我们从遗憾最小化目标开始,并获得最佳的贝尔曼更新优先级探讨策略,可以直接最大化策略的返回。该理论表明,具有较高后视TD误差的数据,应在采样期间具有更高权重的重量来分配更高的Hindsight TD误差,更好的政策和更准确的Q值。因此,最先前的标准只会部分考虑这一战略。我们不仅为以前的标准提供了理论理由,还提出了两种新方法来计算优先级重量,即remern并恢复。 remern学习错误网络,而remert利用状态的时间顺序。这两种方法都以先前的优先考虑的采样算法挑战,包括Mujoco,Atari和Meta-World。
translated by 谷歌翻译
This paper focuses on designing efficient models with low parameters and FLOPs for dense predictions. Even though CNN-based lightweight methods have achieved stunning results after years of research, trading-off model accuracy and constrained resources still need further improvements. This work rethinks the essential unity of efficient Inverted Residual Block in MobileNetv2 and effective Transformer in ViT, inductively abstracting a general concept of Meta-Mobile Block, and we argue that the specific instantiation is very important to model performance though sharing the same framework. Motivated by this phenomenon, we deduce a simple yet efficient modern \textbf{I}nverted \textbf{R}esidual \textbf{M}obile \textbf{B}lock (iRMB) for mobile applications, which absorbs CNN-like efficiency to model short-distance dependency and Transformer-like dynamic modeling capability to learn long-distance interactions. Furthermore, we design a ResNet-like 4-phase \textbf{E}fficient \textbf{MO}del (EMO) based only on a series of iRMBs for dense applications. Massive experiments on ImageNet-1K, COCO2017, and ADE20K benchmarks demonstrate the superiority of our EMO over state-of-the-art methods, \eg, our EMO-1M/2M/5M achieve 71.5, 75.1, and 78.4 Top-1 that surpass \textbf{SoTA} CNN-/Transformer-based models, while trading-off the model accuracy and efficiency well.
translated by 谷歌翻译
We aim to bridge the gap between our common-sense few-sample human learning and large-data machine learning. We derive a theory of human-like few-shot learning from von-Neuman-Landauer's principle. modelling human learning is difficult as how people learn varies from one to another. Under commonly accepted definitions, we prove that all human or animal few-shot learning, and major models including Free Energy Principle and Bayesian Program Learning that model such learning, approximate our theory, under Church-Turing thesis. We find that deep generative model like variational autoencoder (VAE) can be used to approximate our theory and perform significantly better than baseline models including deep neural networks, for image recognition, low resource language processing, and character recognition.
translated by 谷歌翻译
Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning is one way of addressing these challenges, but it has only been shown to work with limited sized class vocabularies and typically requires separation between supervised and unsupervised classes, allowing former to inform the latter but not vice versa. We propose the notion of vocabulary-informed learning to alleviate the above mentioned challenges and address problems of supervised, zero-shot, generalized zero-shot and open set recognition using a unified framework. Specifically, we propose a weighted maximum margin framework for semantic manifold-based recognition that incorporates distance constraints from (both supervised and unsupervised) vocabulary atoms. Distance constraints ensure that labeled samples are projected closer to their correct prototypes, in the embedding space, than to others. We illustrate that resulting model shows improvements in supervised, zero-shot, generalized zero-shot, and large open set recognition, with up to 310K class vocabulary on Animal with Attributes and ImageNet datasets.
translated by 谷歌翻译